Ecotypic differences in the phenology of the tundra species Eriophorum vaginatum reflect sites of origin
نویسندگان
چکیده
Eriophorum vaginatum is a tussock-forming sedge that contributes significantly to the structure and primary productivity of moist acidic tussock tundra. Locally adapted populations (ecotypes) have been identified across the geographical distribution of E. vaginatum; however, little is known about how their growth and phenology differ over the course of a growing season. The growing season is short in the Arctic and therefore exerts a strong selection pressure on tundra species. This raises the hypothesis that the phenology of arctic species may be poorly adapted if the timing and length of the growing season change. Mature E. vaginatum tussocks from across a latitudinal gradient (65-70°N) were transplanted into a common garden at a central location (Toolik Lake, 68°38'N, 149°36'W) where half were warmed using open-top chambers. Over two growing seasons (2015 and 2016), leaf length was measured weekly to track growth rates, timing of senescence, and biomass accumulation. Growth rates were similar across ecotypes and between years and were not affected by warming. However, southern populations accumulated significantly more biomass, largely because they started to senesce later. In 2016, peak biomass and senescence of most populations occurred later than in 2015, probably induced by colder weather at the beginning of the growing season in 2016, which caused a delayed start to growth. The finish was delayed as well. Differences in phenology between populations were largely retained between years, suggesting that the amount of time that these ecotypes grow has been selected by the length of the growing seasons at their respective home sites. As potential growing seasons lengthen, E. vaginatum may be unable to respond appropriately as a result of genetic control and may have reduced fitness in the rapidly warming Arctic tundra.
منابع مشابه
Effects of Simulated Climate Change on Plant Phenology and Nitrogen Mineralization in Alaskan Arctic Tundra
This study was part of the International Tundra Experiment (ITEX) and examined the effects of increased winter snow depth and decreased growing season length on the phenology of four arctic plant species (Betula nana, Salix pulchra, Eriophorum vaginatum, and Vaccinium vitis-idaea) and seasonal nitrogen availability in arctic snowbed communities. Increased snow depth had a large effect on the te...
متن کاملThe unusual vascular structure of the corm of Eriophorum vaginatum: implications for efficient retranslocation of nutrients.
Eriophorum spp. are abundant perennial graminoids in the Arctic tundra and boreal peatlands. Because ecological studies indicated that some plants are unusually productive on infertile and cold sites, the anatomy of the overwintering corms of Eriophorum vaginatum (L.) and Eriophorum scheuchzeri (Hoppe) were examined to determine their involvement in nutrient uptake and storage. Components of th...
متن کاملDifferential physiological responses to environmental change promote woody shrub expansion
Direct and indirect effects of warming are increasingly modifying the carbon-rich vegetation and soils of the Arctic tundra, with important implications for the terrestrial carbon cycle. Understanding the biological and environmental influences on the processes that regulate foliar carbon cycling in tundra species is essential for predicting the future terrestrial carbon balance in this region....
متن کاملInter-Specific Competition, but Not Different Soil Microbial Communities, Affects N Chemical Forms Uptake by Competing Graminoids of Upland Grasslands
Evidence that plants differ in their ability to take up both organic (ON) and inorganic (IN) forms of nitrogen (N) has increased ecologists' interest on resource-based plant competition. However, whether plant uptake of IN and ON responds to differences in soil microbial community composition and/or functioning has not yet been explored, despite soil microbes playing a key role in N cycling. He...
متن کاملEffects of grass species and grass growth on atmospheric nitrogen deposition to a bog ecosystem surrounded by intensive agricultural land use
We applied a (15)N dilution technique called "Integrated Total Nitrogen Input" (ITNI) to quantify annual atmospheric N input into a peatland surrounded by intensive agricultural practices over a 2-year period. Grass species and grass growth effects on atmospheric N deposition were investigated using Lolium multiflorum and Eriophorum vaginatum and different levels of added N resulting in increas...
متن کامل